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The irreversible, y order reaction between a gas and a spherical porous solid is 
analyzed under isothermal and nonisothermal conditions. Effective diffusivity and 
surface area profiles inside the reactant solid are taken into account. An analytic 
solution for the rate of variation of solid size is obtained provided the gaseous re- 
actant is consumed completely inside the porous solid. The moving boundary model 
arises as a particular case of the general solution obtained. 
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NOMENCLATURE 

reaction components 
total surface area of B per unit volume, L2/L3 
internal surface area of B per unit volume, L2/L3 
dimensionless internal surface area of B, ai = ai/ai, 
stoichiometric coefficients 
molar concentration of A, mole/L3 
dimensionless concentration of A, CA = CA/CA, 

molar density of B, mole/L3 
dimensionless concentration of B, cH = cB/cHO 
mean value defined in Eq. (28) 
molar density of D, mole/L3 
dimensionless concentration of D, CD = CD/C, 

effective diffusivity of A in the porous solid, L2/0 
activation energy (Cal/mole) 
coefficient defined in Eq. (13) 
coefficient defined in Eq. (14) 
heat of reaction (Cal/mole) 
generalized Thiele modulus, ho = Lo {[(y + 1)/2]k’,ai,cA:7-1/DA,10.6 
correction factor defined in Eq. (23) 
variable defined in Eqs. (50) and (51) 
reaction rate constant per unit surface area 
dimensionless reaction rate constant, k* = k’/k’, 
characteristic length, L = V/S 
dimensionless parameter, M = 1 + h+(l - ao)/cuoho 
number of moles of B (mole) 
radial coordinate, L 
dimensionless coordinate, r* = r/R0 
radius 
dimensionless radius of the shrinking core, R’ = RJR0 
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Rll gas constant 
f-A reaction rate per unit volume, mole/L38 
+A reaction rate per unit surface area, mole/L‘% 
S geometrical area, L2 
t time, 19 
*t dimensionless time, t* = bk’&AsYaO(UOt/cB, 
T temperature (“K) 
V volume, L3 
2 rectangular coordinate, L 
* 

breek Letters 
dimensionless coordinate, 2* = z/L,, 

fractional surface area, a! = external surface area/total surf. area 
dimensionless parameter, /!I = DAo( -AH)c&J’, 

Y reaction order respect to reactant A 
6 dimensionless parameter, 6 = A$ 
r porosity 
e* dimensionless porosity, C* = t,/~,, 
q overall effectiveness factor, defined in Eq. (15) 
rli internal effectiveness factor, defined in Eq. (16) 
x effective thermal conductivity, Cal/L “K 8 
Subscripts 
0 initial value 

evaluated at the boundary between ash layer and reaction zone 
evaluated at the coordinate where the gaseous reactant is completely consumed 

INTRODUCTION 

Let us consider the reaction between the 
porous solid B and the gas A: 

Am + b&s, = G,, + W,,, 

which is represented in Fig. 1. 

(1) 

This reaction was analyzed in a previous 
paper (4) in order to calculate the solid 
consumption rate as a function of time tak- 
ing into account the influence of the effec- 
tive diffusivity profiles in the porous solid, 
and that of internal surface area of B per 
unit volume. The mass balances for A and 
B were the starting point: 

$>=V DVc -r 
at ‘AA A’ (2) 

aclr _ br 

at -4, 

where l is the porosity of the solid, cA the 
molar concentration of A, cR the molar 
concentration of B, DA the effective dif- 
fusivity of A in the porous pellet and r,\ the 
reaction rate per unit volume. 

The reaction rate was expressed as: 

The objective of the present study was 
to obtain a similar solution but without 
taking into account the working hypotheses 
2 and 3. In other words both, y order irre- 
versible reaction as well as the nonisother- 
ma1 case will be considered. 

As t.he treatment will he essentially the 
same already mentioned (4) let us sum- 
marize briefly the general procedure: 

rA = k’aicA, (4) 1. In order to evaluate the law of varia- 

where k’ is the reaction rate constant per 
unit surface area. 

The solid consumption as a function of 
time must be obtained from the simultane- 
ous solution of Eqs. (2) and (3). However 
this solution is difficult to obtain since L, 
DA, and a; are variable coefficients which 
depend upon the way in which solid B is 
consumed. 

The devised method of solution intro- 
duced four fundamental working hypoth- 
eses: (i) Pseudo steady state for reactant 
A was assumed ; (ii) The system was iso- 
thermal; (iii) Reaction was irreversible 
and first order with respect to A; and (iv) 
Reactant A was consumed at some distance 
from the outer surface of solid B. 
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FIGURE I 

tion of the coefficients DA and ai some rela- 
tionships of the type: 

DA = J)A(~B), 

ai = ai( 

will be necessary. 

(3 

(f-3 

2. In addition, Eqs. (2) and (3) can be 
interpreted to mean that both CA and cB are 
functions of position and time and therefore 
cB is a function of cn and position. But a 
relationship, 

cl3 = cB(cA), (7) 

independent on position may be obtained to 
make both equations (2 and 3) independent. 
This relationship, which has been obtained 
by assuming DA and ai as constant in Eqs. 
(2) and (3), can be introduced into Eq. 2 
and the integration performed once. In this 
integration DA and ai are taken as variable 
coefficients by means of the relationships 
(51, (61, and (7). 

3. Once the solution has been obtained 
(usually in terms of an effectiveness fac- 
tor), it is introduced into a macroscopic 
balance for solid B. By integration of this 

balance the desired conversion-time rela- 
tionship is obtained. 

4. When the nonisothermal case is con- 
sidered, the Damkiihler’s relationship (5) 
relating cA and T must be used when solv- 
ing Eq. (2) as well as when obtaining the 
cg - c.\ function of Eq. (7). 

Let us now deal with the functions (5) 
and (6). The relationship of Eq. (5) has 
been analyzed elsewhere (4) being: 

DA = __ [l - cs*(l - ~0) - c,,*(l - a)lz, 
2 

(8) 

where cg* = cB/cBO. c02, cr,* =&c,-,, and 
c&, cO, cu. and Q are the molar densities and 
porosities of the solid reactant and the solid 
product, respectively. 

By considering that 

CD* = 1 - cg*, (9) 

which is valid when there is no change in 
pellet volume during react,ion, Eq. (8) turns 
OLI t to : 

DA* = [t* + C&*(1 - C*)]2, (10) 
wllere cit z G/Q and D,\” = D,JD,,. 

The function in Eq. (6) will be dependent 
upon the porous structure of the solid and 
as has been done before (4) it will be ana- 
lyzed for unconsolidate and consolidate 
media : 

a. The dispersed solid model. The porous 
solid is made of small non porous particles 
whose number and shape remain unchanged 
as solid is consumed. For this case: 

ai* = cB*2’J, (11) 

where ai* = aiJaio and ai, is the internal 
surface area per unit volume at initial con- 
ditions. 

b. Petersen model (6). The porous solid 
is made of a network of cyclindrical pores 
randomly interconnected. For this case: 

ai*’ + eai*’ + gcB*(l - Gl)lcn*(l - EO) - II 
= 0, (12) 

where 

e = 20 and g = 

with 
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G3 - go G + 2 = 0. and writing it in 
(14) follows : 

Both, Eqs. (10) and (12) provide the dCA* 
necessary relationships to relate DA and ai p 
in terms of solid concentration. 

8 
= 2hu$ 

r , "fl 

dimensionless form it 

Y 10.5 

X [h da DA*~*uCCA*‘&A*] (21) Let us define now an overall effectiveness 
factor (3) for a spherical pellet as: 

9= (- dnA’dt) = (1 - crO)Ti + aoR**, (15) 
r’hV0a0 

where vi is the internal effectiveness factor 
given by: 

q = DA.'%(dcA/dx) ( 8 
* 

r'A.vO% 
(1’3) 

where V, is the initial volume of the solid, 
a, its total initial surface area per unit 
volume, ai, its internal initial surface area 
per unit volume, S, the geometrical area of 
the boundary of the reaction zone and r’n, 
is the reaction rate of A per unit surface 
area at this boundary. 

By writing Eq. (16) in dimensionless 
form it follows: 

qi = [(y + 1>/21(DA./DA,) (dCA’/dZ*) I,R*’ 

W 
1 

(17) 

with 

ho = L O.’ 1 ' (1% 

where LO = V,/S,, DA0 is the effective dif- 
fusivity for the initial condition (E = Q) 
and the dimensionless coordinate in Eq. 
#(17) was defined as z* = z/Lo. 

On the other hand, if reactant A is con- 
sumed in a thin layer within the solid B, 
Eq. (2) will reduce to: 

$ DA ‘2 = k'a&A'. (19) 

Equation 19 can be integrated once by 
using the Clairaut substitution (2) to 
obtain: 

fh -=- 
dz 

l 2 
DA [J 

‘* D k’a.c & 0’s 
A ’ A * o I 

(20) 

By evaluating Eq. (20) in the boundary 
‘between reaction zone and product layer 

where I?* = JG’Jkf8. 
By introducing Eq. (21) into Eq. (17) it 

is obtained: 

(22) 

The term inside brackets in Eq. (22) 
measures the influence of DA and ai profiles 
upon the internal effectiveness factor in the 
isothermal system, as well as the effect of 
temperature profiles in the nonisothermal 
one. 

It can be seen as a correction for the 
Thiele modulus ho. By calling: 

h+ = [(y + 1) Jo’ DA*~*~~.cA*~~cA*]O.‘, (23) 

the internal effectiveness factor can be ex- 
pressed as : 

2 
qi =F. 

0 

For catalytic systems the correction fac- 
tor h+ will be one in the isothermal case 
and a function of heat and mass transfer 
parameters in the nonisothermal one. 

Nevertheless, as it has been pointed out 
before, for noncatalytic systems a cg” - 
cA* relationship will be necessary in order 
to relate D,* (cB*) and ai” (c,“) with CA* 

and to perform the integral of E’q. (23). 

ISOTHERMAL SYSTEM 

Relationship Between cgf and CA* 

For isothermal systems and by assuming 
the product DA * *ai* as constant the cg* - 
CA * relationship was obtained elsewhere 
(4) as: 

a* = 1 - (cA*)(Y+lm. (25) 

Values of h+ were calculated for the two 



TABLE 1 

GAS-SOLID REACTIONS 367 

elsewhere (4) that for high Thiele modulus 
the following relationship can be written: VALUES OF h+ FOR THE ISOTHERMAL CASE AND 

OF h+/h,+ FOR THE NONISOTHERMAL CASE 
(any orderJa 

c* 1 1.33 1.67 2.00 

Dispersed solid model 

0.67 0.79 0.92 1.05 

Petersen model(ta = 0.303) 

0.90 1.09 1.27 1.46 

D Values were approximated to t.he second 
decimal. 

- (dcn/‘dz) = rc’aiCncAY/DA,(dCA/dZ)!,. (30) 

By writing Eq. (30) in dimensionless 
form and introducing Eq. (21) the follow- 
ing result is obtained: 

(d&*/dz*) = - hoai*cAeY/hf 
= - (hfia*)/h+(l - cB*)W(~+U (311 

where cB* was related to cA* according to 
Eq. (25) 

By assuming ai” = 1 and taking into 
account that: 

porous structure models by introducing 
Eqs. (lo), (ll), and (25) or (lo), (12), 
and (25) into Eq. (23) and taking into 
account that for the isothermal case it is 
k” = 1. These values are shown in Table 
1. It is to be observed that h+ is independ- 
ent upon the reaction order y. 

The overall effectiveness factor can be 
readily calculated by introducing Eq. (24) 
into Eq. (15) to obtain: 

* * x =zg, cs* = 0, (32) 

Eq. (31) can be integrated to obtain: 

CB* = 1 - exp[ - (h,,/h+)(zd* - z*)] 
for y = 1, (33) 

and 
c*s* = 1 

h+R*’ 
rl = (1 - WJ) h 

*2 
+wR . (26) 

0 for y # 1. (34) 

Calculation of Solid Consumption 

By writing a macroscopic mass balance 
at the boundary of the solid reactant it 
follows: 

dnB _ 
dt 

bk’cA.YaoVOq (27) 

If Eq. (26) is introduced into Eq. (27) 
it is seen that some relationship nB - R” 
will be necessary in order to integrate it. 
We will obt,ain that relationship as a func- 
tion of the reaction order. 

Let us define a dimensionless mean molar 
density of B in the partially reacted solid 
such as: 

For values of 0 < y < 1 the reactant A 
is completely consumed at a finite coordi- 
nate xf+. As for z” < zf* it is cB* = 1 and 
CA * = 0, Eq. (34) will be only valid for 
z” 2 21%. The value of zg* can be obtained 
from Eq. (34) as: 

l+yh+ q* = z,* - - - 
l-y& 

(35) 

By introducing Eqs. (33)) (34)) and (35) 
into Eq. (28) and taking into account that 
x” = 3r* it is obtained: 

3 
CBS = - 

/ 

R’ 

R*” ,,, 
cB*?‘dr* (2s) 

where r” = r/R0 and R* = RJR, 
Hence : 

r+1 
&* zz 1 - - 

(Y + II2 

2 p + 3(3 - y) p2 
C-Y + 1Y - 

p(2 - r)(3 - 7) 
p3 for 0 < y < 1, (36) 

EBB* = I--pfgp’ 

nB = C&v&3* (2% 
- ip”[l - exp(-i)]fory = 1, (37) 

(‘n the other hand, it has been shown and 
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N2 - r)(3 - r> 

where p = h+/h,R”. 

for y > 1, (38) 

For 0 5 y < 1 the integral of Eq. (28) 
was performed straightforward from 0 to 
Rf” and by using Eq. (34) from Rf” to R,“. 

For the assumption of high Thiele modu- 
lus already done it can be proved that the 
exponential term of Eq. (37) and terms 
in p with power two or higher in Eqs. (36)) 
(37)) and (38) are negligible from the R” 
- t* relationship standpoint. Thus Eqs. 
(36)) (37), and (38) reduce to a general 
expression for any order y 2 0: 

EB* = 1 - r+l h+ 
-Th,R*’ (39) 

Of course these simplications are not good 
for R” + 0. Anyway for this case the 
asymptotic assumption already done is no 
longer valid. 

By introducing Eq. (39) into Eq. (29) 
and taking into account that V, = V,,R”!: 
the following equation is obtained: 

nB = c&v(, y + 1 h+R” R*’ - - - 
2 ho 1 . (40) 

Hence by introducing Eqs. (26) and (40) 
into Eq. (27)) it follows: 

- 
C 

3R” - (-,, + 1) y] $ = MR*‘, 
,o 

where 

(41) 

t* = bk’c~.YaOaOt/cBo = blc’cA,Yt/Loc,so 

and 

itw+(J=&q 
Equation 41 can be integrated with the 

initial condition : 

t’ = 0, R* = 1, (42) 
to yield: 

Mt* = 3(1 - R*) + (y + 1) hcln R’. (43) 
0 

Equation (43) gives the size-time 
relationship for a spherical isothermal pel- 
let with an irreversible 7 order reaction 
provided the gaseous reactant is consumed 
completely inside the porous solid. This 
solution is of direct application when there 
are no concentration gradients in the 
gaseous boundary layer and in the ash 
layer. Otherwise for y # 1 a numerical 
solution must be used with Eq. (41) and 
the equations for mass transfer in the 
product layer and the boundary layer 
around the pellet. 

Equation (43) contains, as a very impor- 
tant particular case, the expression for the 
moving boundary model which is obtained 
when: 

1 - CY~ h+ ~- 
ao ho 

--f 0. 

in such a case Eq. (43) reduces to: 

t’ = 3(1 - R’). 

(44) 

(45) 

NONISOTHERMAL SYSTEM 

Relationship Between cB and c., 

In order to apply the procedure already 
analyzed it is necessary to evaluate some 
CB 

* 
- CA * relationship for the nonisothermal 

case. 
This relationship will be obtained as 

before by assuming that the effective dif- 
fusivity and the surface area per unit 
volume are constant. In addition it will be 
also necessary to assume as constant the 
value of x the effective thermal conduc- 
tivity. 

By assuming steady state DamkGhler (5) 
found a relationship between temperature, 
T and concentration of the gaseous re- 
actant, cA inside a porous solid in which 
a reaction takes place. This relationship 
leads to the following expression (8) : 

lc* = exp Arb(l - CA*) 

1 + p(1 - CA*) 1 ’ I(461 

where p = D,,(- AH)cJA”T,, Ar = E/ 
R,T,, and Ic” = V/k’,. 
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For the particular case in which the 
temperature difference within the solid 
(2’ - T,) is small, Petersen (7) has shown 
that: 

lc’ = exp 6(1 - CA*), 

where 8 = A$. 
(47) 

The introduction of Eq. (47) into the 
dimensionless form of Eq. (20) by assum- 
ing that DA and ai are constant yields: 

de** 
-27 

= 2h, 

CA’ 
3 

0.5 

cA*’ exp[6(1 - cA*)]dcA* , 

(43) 
which can be integrated to obtain: 

- = 2h,J(y + l)-O.5, 
dx* (4% 

where 

= 1 $6~(Y+U 

where (c&“/dz*), is obtained from Eq. 
(49)) evaluating it at s. 

Dividing Eq. (52) by (49) it follows 
- dCR*/dCA* 

= (c.4*Pjexp[80 - CA*)] j/211,, (53) 
where I, is the value of I (Eqs. (50) and 
(51)) for cAc = 1. 

Integration of Eq. (53) with the bound- 
ary condition cB* = 0 for c,,” = 1 yields 

cg* = 1 - [I(c**)lI,l. (54) 
Equation (54) gives the relationship 

between cB* and cA* for the nonisothermal, 
irreversible, y order reaction with respect 
to A. The chosen boundary condition for 
the integration of Eq. (53) implies that the 
time required for the development of the 
cB* profile is negligible. In other words, we 
assumed that, from the starting point, the 
cB* (ca*) relationship is established. This 
may be a good assumption provided the 
gaseous reactant is consumed completely 
in a narrow thickness inside the porous 
solid, which was one of our working 
hypotheses. Otherwise, conversion should 
be >0 for our initial condition. 

On the other hand, the introduction of 
Eq. (47) into Eq. (22) yields: 

There are tables for evaluating the in- exp[6(1 - cA*)]dcA* , 
t (55) 

complete gamma function, so that the series 
are not useful except for large or small which will turn out to Eq. (24) by defining: 
(6~~“) (our case is only represented by 
small values of that term). For integer h+ = { (y + 1) /,’ DA*c&./ 
values of y, Eq. (50) simplifies to 

i 
exp[6(1 - c~*)]dc~*\““, (56) 

n=y 0.5 

x 1 - @A’ 
i c [(k4*)RIn!l 

It 
, (51) 

n=o 

which is easily applied. 
On the other hand, by introducing Eq. 

(47) into Eq. (30) and writing it in 
dimensionless form we obtain 

-dcg*/dz* = [2/(-y + l)]h,&‘)r 
X (exp[d(l - ~~*)]j/(dc~*/dz*)~, (52) 

where h+ is now a correction factor for the 
Thiele modulus due to DA”, CL;* and T 
profiles. When DA and ai are constant, h’ 
reduces to a correction factor h,+ due to 
temperature profiles only, which is the 
function of 6 used in catalysis (7). The 
only limitation in the calculation of h+ is 
that we assumed constant coefficients (DA, 
ai and X) when the calculation of the cB - 
CA relationship was performed. This as- 
sumption was used twice: (a) to relate CA 

to T, and (b) to relate finally cB to CA. 
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TABLE 2 
VALUES OF h+ FOR THE NONISOTHERMAL CASE<~ 

z* 1 1.33 1.67 2.00 

6 y: 0 1 2 0 1 2 0 1 2 0 1 2 

Dispersed solid model 

i- 

1; 0.30 0.44 0.38 0.51 0.43 0.54 0.35 0.52 0.45 0.60 0.51 0.64 0.41 0.60 0.52 0.69 0.58 0.74 0.47 0.69 0.59 0.79 0.67 0.84 

2 1.20 0.99 0.90 1.42 1.17 1.06 1.64 1.36 1.23 1.87 1.55 1.40 
5 3.64 2.26 1.67 4.31 2.68 1.98 4.98 3.09 2.29 5.68 3.53 2.62 

Petersen model (~0 = 0.303) 

-5 0.40 0.51 0.57 0.48 0.61 0.69 0.56 0.72 0.81 0.65 0.82 0.93 
-2 0.59 0.68 0.73 0.71 0.82 0.87 0.83 0.95 1.02 0.96 1.10 1.17 

2 1.61 1.34 1.21 1.94 1.61 1.45 2.27 1.88 1.70 2.61 2.17 1.96 
5 4.90 3.05 2.25 5.88 3.66 2.71 6.89 4.29 3.17 7.94 4.94 3.66 

(1 Values were approximated to the second decimal. 

We understand it is the first one which 
may be mainly criticized especially when 
dealing with exothermic reactions, since the 
influence of T upon the reaction rate is 
greater than that of CA or c,+ 

Values of IL+ were calculated by numerical 
integration of Eq. (56) taking into account 
Eq. (54) to obtain the functionality DA* 
(CA*) and ui*(cA*). Results are shown in 
Table 2. Table 2 shows that the more exo- 
thermic the reaction, the higher is the value 
of h+. 

We can compare the value of the non- 
isothermal h+ for a given porous structure 
model and different values of c.+, y, and 6 to 
that for the nonisothermal catalytic case 
for same values of y and 6. The ratio 
h+/hc+ results independent on y and 8 and 
it is equal to the isothermal h+ of Table 1. 
This is of upmost practical importance 
since knowing the values of y and 6 for 
our porous reactant solid we can calculate 
h,+ (which is independent on the porous 
structure model) and then, using Table 1 
with the porous structure model and e” for 
the particular case it is possible to calculate 
the value of the nonisothermal h+. 

Calculation of Solid Consumption 

From the isothermal case it can be seen 
that the contribution of the cB profile to 
solid consumption rate is reasonably small 

for high Thiele modulus. On the other hand, 
it must be expected that in the noniso- 
thermal case it will be the temperature 
profile rather than the cB profile which 
will mainly affect the solid consumption 
rate. By neglecting the contribution of the 
cB profile to the rate of solid consumption 
(cB* cz 1) , Eq. (29) reduces to: 

nB = c&,R*~. (57) 
The introduction of Eqs. (26) and (57) 

into Eq. (27) yields in dimensionless form: 

- 3(dR*/dt’) = M, (5% 
where t” and M, have the same meaning 
as before except that M involves now 
a nonisothermal h+. The integration of Eq. 
(58) with the boundary condition of Eq. 
(42) yields : 

Mt* = 3(1 - R’). (59) 

Equation (59) is the solution for the 
size-time relationship in a spherical, non- 
isothermal pellet which is consumed by an 
irreversible 7 order reaction with respect 
to the gaseous reactant and provided this 
reactant is consumed completely inside the 
porous solid. The influence of temperature 
gradients, as well as of effective diffusivity 
and internal surface area, is measured by 
the correction factor h+ included in M. 

When gaseous film or product layer 
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resistances are important, a numerical 
solution must be used with mass and heat 
transfer equations in both resistances as 
well as with Eqs. (26)) (41)) and (58). 

CONCLUSIONS 

The rate of variation of size in a spherical 
porous solid has been calculated when it 
reacts with a gas under asymptotic con- 
ditions. 

Even though temperature gradie,nts in- 
side the porous solid were taken into ac- 
count the analytic solution obtained is 
simple. The solution contains as a partic- 
ular case the Moving Boundary Model. 

In addition, it is shown that the ratio 
between the effectiveness factor for the re- 
actant solid (wit’h D,, ai and T profiles) 
and that for a catalyst (with T profiles) 
under the same references conditions is 

independent on reaction order and on 
transfer parameters being only dependent 
upon the porous structure of the reactant 
solid. This provides a simple method to 
evaluate the parameter h+ under non- 
isothermal conditions. 
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